

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics			
QUALIFICATION CODE: 07BAMS		LEVEL: 6	
COURSE CODE	: LIA601S	COURSE NAME: LINEAR ALGEBRA	
SESSION:	JUNE 2023	PAPER: THEORY	
DURATION:	3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	DR. NA CHERE	
MODERATOR:	DR. DSI IIYAMBO	

INSTRUCTIONS		
1.	Answer ALL the questions in the booklet provided.	
2.	Show clearly all the steps used in the calculations.	
3.	All written work must be done in blue or black ink and sketches must	
	be done in pencil.	

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1 [6]

- 1.1. If the nullity of the linear transformation $T: P_n \to M_{mn}$ is 3, then determine the rank of T. [3]
- 1.2. Prove that a square matrix A is invertible if and only if 0 is not an eigenvalue of A. [3]

QUESTION 2 [16]

Determine whether each of the following mappings is linear or not.

2.1. T:
$$\mathcal{F} \to \mathcal{F}$$
 defined by T(f) = $(f(x))^2$, where \mathcal{F} is the vector space of functions on \mathbb{R} . [5]

2.2. T:
$$M_{nn} \rightarrow M_{nn}$$
 defined by $T(A) = AC - CA$, where C is a fixed $n \times n$ matrix. [11]

QUESTION 3 [11]

Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 defined by $T\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}2\\1\\3\end{bmatrix}$ and $T\begin{bmatrix}-1\\1\end{bmatrix} = \begin{bmatrix}1\\3\\4\end{bmatrix}$. Find $T\begin{bmatrix}a\\b\end{bmatrix}$ and use it to determine $T\begin{bmatrix}3\\2\end{bmatrix}$.

QUESTION 4 [8]

Let $\mathcal F$ be the vector space of functions with basis $S=\{\sin t, \cos t, e^{-2t}\}$, and let $D:\mathcal F\to\mathcal F$ be the differential operator defined by $D\big(f(t)\big)=f'(t)$. Determine the matrix $[D]_S$ representing D in the basis S.

QUESTION 5 [11]

$$\text{Let L: } \mathbb{R}^4 \to \mathbb{R}^3 \text{ be the linear mapping defined by L} \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_1 - x_2 + x_3 + x_4 \\ 2 \ x_1 - 2 x_2 + 3 x_3 + 4 \ x_4 \\ 3 x_1 - 3 x_2 + 4 \ x_3 + 5 x_4 \end{bmatrix}.$$

Find the basis and the dimension of the image of L.

QUESTION 6 [11]

Consider the bases B = $\{1 + x + x^2, x + x^2, x^2\}$ and C = $\{1, x, x^2\}$ of P_2 .

6.1. Find the change of basis matrix
$$P_{B\leftarrow C}$$
 from C to B.

6.2. Use the result in part (6.1) to compute
$$[p(x)]_B$$
 where $p(x) = 2 + x - 3x^2$. [3]

[8]

QUESTION 7 [26]

Consider A =
$$\begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix}.$$

- 7.1. Write down the characteristic polynomial $P(\lambda)$ of A and use this to find the eigenvalues of A. [6]
- 7.2. Find the eigenspaces corresponding to the eigenvalues of A. [17]
- 7.3. Is A diagonalizable ? If so, find an invertible matrix P that diagonalizes A. [3]

QUESTION 8 [11]

Find an orthogonal change of variables that eliminates the cross-product term in the quadratic form $q(x_1, x_2, x_3) = 3x_1^2 + 2x_3^2 + 4x_1x_2$ and express q in terms of the new variables.

END OF FIRST OPPORTUNITY EXAMINATION QUESTION PAPER